Signed in as:
filler@godaddy.com
Please reach out to us if you cannot find an answer to your question.
Solar panels convert sunlight into direct current (DC) electricity. An inverter then converts the DC electricity into alternating current (AC) electricity, which is used to power your home or business. Any excess electricity is sent back to the grid for others to use or remain in your account to be used as credit
The cost of a solar installation varies depending on the size of the system, the type of panels used, and the location of your home or business. We offer free consultations to provide a customized quote.
You will earn credit for the solar electricity you generate through a policy called net metering. Net metering allows you to offset your utility electricity consumption with the solar electricity your array produces. When your system generates electricity, that electricity flows into your home or building and is consumed on-site. When your solar panels produce more electricity than your home or building needs, the excess electricity is sent out to the local grid, where it is consumed by your neighbors. Through net metering, you receive full credit for the excess electricity you feed onto the grid. Once you install solar, your monthly electric bill will be calculated to reflect: the total amount of electricity you consumed minus the total amount of electricity you produced (i.e., the solar electricity you fed onto the grid).
You will earn credit for the solar electricity you generate through a policy called net metering. Net metering allows you to offset your utility electricity consumption with the solar electricity your array produces. When your system generates electricity, that electricity flows into your home or building and is consumed on-site. When your solar panels produce more electricity than your home or building needs, the excess electricity is sent out to the local grid, where it is consumed by your neighbors. Through net metering, you receive full credit for the excess electricity you feed onto the grid. Once you install solar, your monthly electric bill will be calculated to reflect: the total amount of electricity you consumed minus the total amount of electricity you produced (i.e., the solar electricity you fed onto the grid).
Solar panels can be installed on almost any kind of roof material and almost any roof structure (flat roof, pitched roof, etc.). Panels are attached to your roof with a racking system. The best racking system for your home depends on how your roof is structured and what type of roofing materials you have. Your installer will recommend the racking system most appropriate for your property.
Most solar arrays are grid-tied, meaning they are connected to the local power grid. This allows solar homeowners to use their solar electricity when the sun is shining, and to switch seamlessly over to utility electricity on cloudy days or at night. For grid-tied solar arrays, it’s important to understand how a power outage will affect your solar panels and your home. Firstly, when the power grid goes down, your solar panels will automatically stop producing electricity. This is a required safety feature, designed to prevent your panels from feeding electricity onto the grid and injuring the utility linesmen who are servicing the wires. As a result, when the grid is down and your solar panels stop producing electricity, your home will not have power (even if the sun is shining).
Absolutely! Many home and business owners chose to go solar today – leveraging the immediate cost competitiveness of solar to start saving money on their electric bills – and install batteries in the future, once hardware costs fall. There is nothing that prevents you from adding battery storage to an existing solar array.
There are four factors that determine if your roof is a good fit for solar:
Orientation: Ideally, you should have a south-facing roof. In the northern hemisphere, south-facing roofs maximize the amount of sunlight your solar panels collect. The more sunlight they collect, the more electricity they produce, and the quicker you can pay off your system. You can still mount solar panels to your roof if it faces due east or west, but the panels will produce less energy (about 75% of what a south-facing roof would produce). If you have a flat roof, the panels can be engineered to face due south no matter how your roof is oriented.
Shading: Once you’ve determined that your roof is oriented in the right direction, the next step is to ensure that your roof is not shaded. The portions of the roof where solar will be installed should be free of shade for most of the day, as shade can significantly reduce electricity production. Trees, chimneys, dormers, and HVAC vents are factors that can cause shading on a roof. If you’re not sure if your roof is shaded, your installer can use a tool called the “solar pathfinder” to figure out if trees or other objects will cast shade during the day.
Surface: Solar arrays are most efficient when they are installed in a large, uninterrupted space. Things like dormer windows, chimneys, vents, skylights, and air conditioning units can be obstacles to installing an array.
Durability: Finally, if your roof is more than 15 years old, you may want to consider replacing it before installing solar panels. Most solar vendors recommend using roofing material that will last as long as the system (minimum of 25 years).
A solar array will last at least 25 years. It’s important that the roof underneath it be in good shape. If your roof is more than 10 years old, you should have it evaluated to determine its remaining lifespan. You may want to consider repairs or replacement before installing solar. NOTE: According to an FAQ on the IRS website, in most circumstances roof improvement or replacement costs can not be included in the basis for the federal tax credit. Solar shingles/tiles may qualify.
It typically takes one to two months for an installer to design your solar array and secure initial permits (from your municipal government) and interconnection agreements (from your electric utility). Depending on your exact solar permitting office and utility interconnection team, this could take anywhere from a few weeks to a few months. Once initial permits and interconnection agreements are in hand, your installer will typically need only one to two days to physically install your array (panels, inverter, racking system, and wiring). The installer will then need to get final approval from the municipal permitting office and secure final interconnection approval from the utility. This can take an additional one to three months depending on the jurisdiction.
We use cookies to analyze website traffic and optimize your website experience. By accepting our use of cookies, your data will be aggregated with all other user data.